
Mathematics

Division

Computing and Applied Mathematics Laboratory

Error-Bounding in Level-Index

Computer Arithmetic

Daniel W. Lozier

Peter R. Turner

October 1995

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards and Technology

Gaithersburg, MD 20899

QC

100

.056

NO. 5724

1995

Njsr

1

J

NISTIR 5724

Error-Bounding in Level-index

Computer Arithmetic

Daniel W. Lozier

Peter R. Turner

U.S. DEPARTMENT OF COMMERCE
Technology Administration

National Institute of Standards

and Technology

Applied and Computational Mathematics Division

Computing and Applied Mathematics Laboratory

Gaithersburg, MD 20899

October 1995

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

TECHNOLOGY ADMINISTRATION
Mary L. Good, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS
AND TECHNOLOGY
Arati Prabhakar, Director

PREPRINT

This paper was presented at the International IMACS-GAMM Symposium on

Numerical Methods and Error-Bounds, held at the University of Oldenburg,

Germany, July 9-12, 1995, and it has been submitted to the Proceedings of the

Symposium which will be published as a special volume by Akademie Verlag,

Berlin. The paper is subject to revision for compliance with the recommenda-

tions and requirements of referees and editors.

i

i

Error-Bounding in Level-Index Computer Arithmetic
D. W. Lozier and P. R. Turner

Applied and Computational Mathematics Division

National Institute of Standards and Technology

Gaithersburg, MD 20899

Mathematics Department

United States Naval Academy
Annapolis, MD 21402

Abstract. This paper proposes the use of level-index (LI) and symmetric level-index

(SLI) computer arithmetic for practical computation with error bounds. Comparisons

are made with floating-point and several advantages are identified.

1 Introduction

Any approach to the general problem of assessing the total error in the output of

computer programs depends on a detailed understanding of the computer arithmetic.

The finite precision of the arithmetic gives rise to rounding errors that can be an

important component of the total error. Accordingly, much effort has gone into refining

the algorithms and circuitry that carry out floating-point arithmetic. One goal of this

effort has been to minimize rounding errors. Another was to ensure that exceptional

conditions, such as underflow and overflow, are detected and reported because their

occurrence can completely invalidate the results of a computation. The present state

of floating-point hardware design [5] is close to optimal, and so the question arises: Is

there a radically different system of arithmetic with properties that are superior?

An answer, proposed a little more than ten years ago [l] and known as level-index

arithmetic, is based on representing positive numbers by generalized logarithms. These

representations are obtained by repeatedly taking logarithms until a result between

zero and unity, the index, is obtained. The corresponding level is the number of

times the logarithm was taken. The level (an integer) and the index (a fraction) are

added and stored in a fixed-point location as the internal representation of real positive

numbers. This describes the unsymmetric form of level-index arithmetic. There is also

a symmetric form [3] in which, effectively, real numbers less than unity in magnitude

are reciprocated before being stored.

The main purpose of this paper is to compare the new arithmetic against the old, par-

ticularly in regard to interval arithmetic and other error-bounding techniques. Among
the advantages will be (i) an immunity to extraneous considerations necessitated by

underflow and overflow; (ii) a unified error analysis that naturally blends absolute

errors, relative errors, and higher-order generalized errors; and (iii) a natural means

for increasing precision when needed within an algorithm.

The representation of real numbers in a computer is based on a mapping of the form

(
1
)

x^scn —

.

E e 7L C 7^

2 D. W. Lozier and P. R. Turner

where S and 7^ are subsets of the real numbers. 7^ is a finite subset associated with

computer words of length w bits. Elements of 7^ are called internal numbers, those

of S external numbers. Usually 5 is a finite interval such as {—M, M) or {M~^, M).

To be useful in representing external numbers, the mapping should be invertible but

of course this is possible only in an approximate sense. Accordingly, suppose that

(2) » = /(JT)

where / is an approximation to a continuous real function / that is invertible with

inverse function g. Then we define the generalized error function

(3) generr(X,X):=l/(X)-/(l)|

where

(4) X = g{x)

is our external approximation to X.

Commonly used representations are fixed-point, logarithmic and floating-point. The
fixed-point representation function is the identity. In this case X = x and, cissuming

S = (—1,1), X is obtained by rounding the binary expansion of A to — 1 bits (one

bit is needed for the sign of X). The generalized error is just the absolute error, and

the inequality

(5) generr(X, X) = |X - Xj < 2"^

is satisfied.

For the binary logarithmic representation on S = with M = 2^”^, / is the

binary logarithm and x = /(X) is logj X rounded to w — m — 2 bits. Then

(6) generr(X, X) =
|

logj X - logj X| <

where X = 2^. Since

(7) log2 X - log2 X = log2{l + (X - X)/X}

and similarly for log2 X — log2 X, the generalized error is, to within terms of first

order, just the relative error times l/ln2 = 1.44- • -. It may be noted in comparison

to fixed-point that an additional sign bit is needed and that the representation of zero

is special.

Floating-point may be viewed as a modification of the logarithmic representation.

Suppose X G {M~^, M) and write

(8) log2 X = c(X) + log2 {l + a(X)}

where c(X) is the unique integer determined by the condition cr{X) G [0, 1). Here <t(X)

is the fractional part of the floating-point significand and 2'^^^^ is the scale factor. The
representation function is not so readily expressed as for the logarithmic representation,

since the signs of c(X) and o'(X) are opposite when X < 1. In effect, it is taken as

Error-Bounding in Level-Index Computer Arithmetic 3

f{X) = a-{X) with separate accounting for c(X). The internal approximation x is

cr(X) rounded to w — m — 2 bits, and in the usual case when c(X) = c(X),

(9) generr(X, X) = |c7(X) - a[X)\ <

For IEEE arithmetic in single and double precision, m = 7 and m = 10, respectively.

2 The Level-Index Representation

The generalized logarithm is, by definition, the function

t if 0 < t < 1,

1 + 'ip(\nt) if t > 1,

—•0(—t) if t < 0.

This function is invertible and its inverse function is given by

t if 0 < t < 1,

if t < 0.

Both Tj} and 4> are strictly increasing, continuous, and continuously differentiable on R.

If t > 1, 'ip(t) is obtained by repeatedly taking logarithms until In^^^ t = Inin - --Int G

[0, 1). Then In^^^t. By definition, £ is the level and In^^^ t is the index of

t. For the inverse function, ii t = £ + a > 1 where £ is the integer part of t, then

= exp(^)(a).

For level-index, or LI, computer arithmetic we take S = (—<^(8), i^(8)) and x = ip{X)

where x is obtained by rounding the binary expansion of ip{X) to w — A bits. The
following table supports this choice of S:

(
11

)
4>{t) = <

(
10

) V>(t) <

X <f>{x) X (l>{x) X (j){x)

0 0 3 15.15 ••• 4.63 21024 ^

1 1 4 2Q6.58- 4.80--- 216384

2 2.72- •• 4.40 • • • 2^2® w 10®® 4.99- •• 25502841 ^ 2Q1656520

We see that x = 4.40 corresponds approximately to the IEEE standard overflow thresh-

old in single precision {w = 32). Overflow thresholds in double precision (w = 64)

and quadruple precision {w = 128) are reached at x = 4.63 and x = 4.80, respectively.

Allocating 3 bits to the level and w — 4 to the index (the remaining bit is the sign

bit) allows us to represent numbers in the vast interval (—^(8), ^(8)). Indeed, <^(6) is

already so large that it is impractical to express it as a floating-point number.

If restricted to the interval (—1, 1), LI arithmetic is equivalent to fixed-point. A
symmetric modification, called SLI arithmetic, is more analogous to floating-point.

4 D. W. Lozier and P. R. Turner

We take S = (M“^, M) where M = (f>{S). The representation function becomes

(
12)

^(i) = 0(lnt) =
^(i) - 1

1 -

ift > 1,

if 0 < t < 1

with inverse function

(13) $(i) = + 1).

Again, 3 bits are allocated to the level. With one bit each for the signs of X and

w — 5 bits are allocated to the index.

In [6] it is proved that LI and SLI arithmetic with 3 bits allocated to the level are

both closed. That is, all sums, differences, products, and quotients, excluding division

by zero, of numbers in 7^ are elements of S, provided only that w does not exceed 5

million bits or so. Thus the rounded result of an arithmetic operation in 7^ is again in

Tyj. In particular, this means that both overflow and underflow have been abolished

for the basic arithmetic operations.

The generalized error for LI and SLI is defined by (3) and (4) with /, g replaced by

'll}, <f)
and $, respectively:

(14) generr(X, X)
|V»(A') - V'(X)| < 2^-^ for LI,

|^(X)-'y?(X)| < 2'^-’" for SLI;

cf. (5), (6) and (9). At level 1, when 1 < A” < e, the generalized error is the relative

error in the external approximation (to within terms of first order). The behavior of

relative error for A > e is the subject of the next section.

3 Representation Errors

For a given computer arithmetic the generalized error is meaisured in the set 7^ of

internal numbers: it is bounded uniformly by a small constant that depends on to.

For fixed-point, logarithmic and floating-point arithmetics the generalized error has

a familiar interpretation in the external set S: the number of either ‘decimal places’

(in fixed-point) or ‘significant decimal digits’ (in logarithmic and floating-point) is

uniformly bounded. There is no familiar interpretation of generalized error for level-

index arithmetic. Accordingly, a comparison in familiar terms is needed.

Figure 1 presents a comparison of SLI against IEEE floating-point for -w = 32 and

S = [1, 10^^]. The horizontal scale is log^o-^ A € «S. The vertical scale, //(A), is

a measure of ‘significant decimal digits’ computed by evaluating the formula

(15) /x(A) = - logio ^ y
^

in double precision. Here the equations

(16) ^(A+) = ^(A)+2-2^,

determine A"*" and A.

o-(A+) = o-(A) + 2-23

Error-Bounding in Level-Index Computer Arithmetic 5

Figure 1. Comparison of Figure 2. Comparison of

SLI against IEEE for w = SLI against IEEE for w =
32. 32,64,128.

Figure 1 illustrates differences between 32-bit IEEE and SLI arithmetic. First, the

IEEE curve exhibits oscillatory behavior not present in SLI. This is due to the phe-

nomenon [4]^ known as wobbling precision. The logarithmic curve, were it shown,

would lie within the oscillatory band and would be essentially constant. The SLI

curve is smooth and gradually decreasing. Second, the IEEE curve does not extend

beyond the overflow limit of 10^®, approximately. Numbers beyond this limit have no

IEEE representation other than a generic infinity symbol, whereas SLI retains use-

ful significance far beyond the limit. Third, the two curves cross at approximately

X = 2400. Before this point SLI has more significance, while beyond it IEEE does

until it fails at the overflow limit.

Figure 2 compares 32-, 64- and 128-bit lEEE^ and SLI over the range S = [1,
10®°°^.

In the IEEE formats the overflow limit is increased as w increases by extending the

width of the field that holds c(X); cf. (8). The field widths are 8, 11 and 15 bits,

respectively. Accordingly, as w increases the SLI index field gains more bits than

the IEEE significand field. This results in the crossover point increasing from 2400

in the 32-bit format to approximately 10^® and 10®^ in the 64- and 128-bit formats,

respectively. In computing applications that involve numbers that lie mostly to the

left of the crossover point, the relative precision of SLI should exceed IEEE.

In the authors’ experience instances are known where double precision is used in

practical computations not because single precision is too inaccurate but to avoid

^The phenomenon occurs for radix 2 as well as for higher floating-point radices, contrary to what

is claimed in [4]

.

^Strictly, the IEEE standard does not specify 128-bit formats. The format used here is a plausible

extension that has been used in commercial computer products.

6 D. W. Lozier and P. R. Turner

overflow. In SLI overflow (and underflow) are impossible, so the precision can be

chosen solely on accuracy requirements. Another advantage is that the field for the

level is always 3 bits. Without a clear mathematical criterion for subdividing the

floating-point word into its two constituent subfields, a variety of inconsistent formats

has emerged. This is still true even after widespread adoption of the IEEE standard.

4 Concluding Remarks

The active developers of LI and SLI are small in number but they have produced a body

of literature on algorithms, applications and error analyses some of which is contained

in the 1989 survey [2]. This reference summarizes the recursive algorithms that are

used to perform the basic LI and SLI arithmetic operations in fixed-point arithmetic

with a small number of guard digits. The 1995 paper [7], which discusses present and

planned software simulations, lists additional references in its bibliography.

LI and SLI possess several advantages compared to floating-point. Some of these have

been introduced in this paper. Freedom from underflow and overflow is the greatest

advantage. Error analysis in terms of generalized errors may appear to be an obstacle

but it may have advantages, for example in appropriately measuring computational

error in the neighborhood of a zero. This possibility will be taken up in a future

paper. Finally, in contrast to floating-point, an increa.se or decrease in wordlength to

accommodate changing needs for precision is achieved naturally in LI and SLI.

References

1. Clenshaw, C. W. £uid Olver, F. W. J.: Beyond floating point. J. Assoc. Comput. Mach. 31 (1984),

319-328.

2. Clenshaw, C. W.; Olver, F. W. J. and Turner, P. R.: Level-index arithmetic: An introduc-

tory survey. Numerical Analysis and Parallel Processing, Lecture Notes in Mathematics 1397

(P. R. Turner, ed). Berlin: Springer-Verlag 1989, 95-168.

3. Clenshaw, C. W. and Turner, P. R.: The symmetric level-index system. IMA J. Numer. Anal. 8

(1988), 517-526.

4. Cody, Jr., W. J. and Waite, W.: Software Manual for the Elementary Functions. Englewood Cliffs,

New Jersey: Prentice-Hall 1980.

5. IEEE: IEEE Standard for Binary Floating-Point Arithmetic. New York: The Institute of Electrical

and Electronics Engineers, Inc., 1985.

6. Lozier, D. W. and Olver, F. W. J.: Closure and precision in level-index arithmetic. SIAM J.

Numer. Anal. 27 (1990), 1295-1304.

7. Lozier, D. W. and Turner, P. R.: Parallel and serial implementations of SLI arithmetic. NIST
Internal Report 5660. June 1995. Submitted to Theoretical Computer Science.

I

I

i

i

